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A note on the total reflexion or transmission of surface 
waves in the presence of parallel obstacles 

By D. V. EVANS 
Department of Mathematics, University of Bristol, England 

(Received 26 October 1973 and in revised form 1 August 1974) 

It is shown how a two-dimensional surface wave can be either totally reflected or 
totally transmitted in the presence of two parallel vertical barriers each con- 
taining a small gap. Total transmission of a surface wave past obstacles has been 
known to occur in many situations in water-wave theory, but total reflexion is 
a comparatively new phenomenon which could be of practical use in the design 
of breakwaters. 

It would seem reasonable to suppose that, when a two-dimensional plane 
surface wave is incident upon a finite number of fixed obstacles, then provided 
that the regions of fluid on either side of the obstacles are connected, part of the 
wave energy will be reflected and part transmitted in the form of a surface wave 
of reduced amplitude travelling away from the obstacles. It is shown here that 
this statement is not true in general and that it is possible to eliminate completely 
the transmitted wave using as obstacles the simple configuration of two vertical 
barriers with small symmetric gaps. This total reflexion of the incident wave can 
be interpreted as an interference effect between the fluid motions just outside 
and between the barriers. 

This phenomenon was first shown to exist in a paper by Evans & Morris (1972), 
hereafter denoted by I .  I n  that paper the problem of the transmission of surface 
waves past two vertical parallel barriers immersed to a finite depth below the free 
surface was considered. This problem was solved using complementary approxi- 
mations to the solutions of certain integral equations. Because the approxima- 
tions provided upper and lower bounds to expressions related to the reflexion and 
transmission coefficients the authors were able to prove that total reflexion was 
possible for certain configurations of barrier spacing, depth of immersion and 
incident wavelength. When the barriers were not close together total reflexion 
occurred at values of the incident wavelength for which the amount of trans- 
mitted wave energy was negligible. When the barriers were closely spaced the 
complementary approximations were poor and only rough bounds could be 
obtained for the values of the incident wavelength a t  which total reflexion 
occurred. These bounds have since been confirmed by Newman (1974), who has 
considered the case of closely spaced barriers using a matching scheme first 
employed by Tuck (1971) in a similar context. 

The possibility of total transmission of an incident wave by obstacles has been 
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known for some time (Newman 1965) and this also occurs in I and in the problem 
to be considered here. 

The problem will be solved using an approximate method valid for small gaps 
which was used by Packham & Williams (1973) to solve the same problem for 
a single barrier with a gap. (The same idea has more recently been employed by 
Leppington & Levine (1973) in considering the transmission of sound waves 
through a plane screen containing small circular or elliptical holes.) It is possible 
to obtain the same results using Tuck's matching scheme, which has the advan- 
tage of being applicable to more general situations, although the mathematical 
justification is more difficult than for the method used here. 

It is shown that the condition for zero transmission reduces to a single tran- 
scendental equation involving parameters based on the incident wavelength, 
barrier separation and gap depth. It is further shown that, for a given barrier 
separation and gap depth, there exists an infinity of values of the incident wave- 
length for which the equation is satisfied, and total reflexion occurs. 

The formulation of the problem follows closely that used in I and only an 
outline is given here. The undisturbed free surface is y = 0 and y is measured 
vertically downwards. The barriers occupy x = & b, y > 0 except for a gap 
I y- hl < a in each barrier. The usual linearized equations for irrotational incom- 
pressible flow give rise to a velocity potential @(x, y, t )  = Re {$(x, y) eciwt},  where 
w is the incident wave frequency. Then $(x, y) is harmonic in y > 0 and satisfies 

~ $ + a $ l a ~  = 0, = 0, K = W y g  = 2np, 

a $ p x  = 0, = + b ,  ly-q > a, 
and $ and a$[ax are continuous across the gaps. Here A is the wavelength of the 
incident wave. 

At x = - 00 it is assumed that only a wave travelling away from the barriers 
exists. The situation is illustrated in figure 1.  

It is convenient to split $ into symmetric and asymmetric terms. Thus we write 

$("G Y) = $&, Y) +$&, Y), 
where $,(GY) = $A-GY)) $&Y) = -$,(-GY). 
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Then, for x > b, let 

dk 
iK(l-b)) +Inrn s ( k )  e-k(z-b) (k cos ky  - K sin k y )  $,(x, y )  = q50e-EY (eciK"-"+ Rse 

k(kZ+K2) 
(1)  

and, for 1x1 < b, let . .  
S ( k )  cosh kx(k  cos ky - K sin k y )  

$,(x, y )  = $OXle-K~cosKx+ k(k2 + K2)  dk. (2) 

An integral equation for the function U,(y) = (a$,/ax),=, can be derived by 
applying the condition of continuity of U, across L = {ylx = b, I y - hl < a} by 
using the inversion formula first proved by Havelock (1929). If C<(y) is then 
normalized we obtain 

n 

and 

u,(t) G,(y, t )  dt = e-Ku, y E L, 

IL u,(y) e-Kudy = C,, 

(3) 

(4) 

where C, is real and is given by 

( 5 )  c , = -  i( I - R,)/{( 1 + R,) - i( 1 - R,) cot lib}, 

dk 
O0 (1  + coth kb) (k  cos kt - h7 sin kt) (k cos k y  - Ksin k y )  

k( k2 + P) G,(y,t) = - 
T o  

U,(Y) = 3ics v,(Y 1 - R,). 
'S 

and 

The details are given in I, where expressions are given for the functions s(k), X, 
and X ( k )  in terms of U,(y). 

Equations similar to (3) and (4) can be derived for the asymmetric potential $,, 
where all subscripts s are replaced by a, the kernel G,(y, t )  is derived from G,(y, t )  
by replacing coth kb by tanh kb, and C, is derived from C, by replacing cot l i b  by 
-tanlib. Notice that as x + + m  

$(x ,  y )  N 2$,e-""+iKb (e-iKx + R eiKx) 

$(x, y )  - 2$,T exp ( - K y  + ih 'b  - iliz), 
and as x+-m 

(6) R = I(R + R ) e-2iKb T = 1(R, - R ) e-2iKb. where 2 s  a 2 

Up to this point, no approximation has been made and the exact linearized 
solution to the problem is embodied in (4) and ( 5 ) ,  and the corresponding 
equations for the asymmetric case. These determine R, and R, once u,(y) and 
u,(y) have been obtained as the solution of the integral equation (3) and its 
counterpart in the asymmetric case. An explicit inversion of (3) is most unlikely 
so we assume at  this point that 2a/h < 1, whilst Kh and 2b/h are O(1). In  other 
words we are concerned with gaps small compared with the depth of immersion. 
This enables us to use an approximate method used by Packham & Williams 
(1972) to find C, and C,. 

We can write 
G,(y,t) = -r-llog ly-tl +g,(y,t), 
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where g,(y, t )  is finite for y, t E L. Then (4) becomes 

For 2a/h < 1, y and t differ little from h on L and we can replace gs(y, t )  by 
g,(h, h),  its value a t  the centre of the gap. In fact it  can be shown that 

g,(y,t) = g,(h,h)+0(1) as 2a/h-+O, y , t ~ L .  

Then lLu,(t)log ly-tl dt = p = - - 7 ~  (7)  

and a similar approximation applied to (4) gives 

Now the integral equation (7) has the explicit solution (Cooke 1970) 

u,(y) = prl[ log (+a)]-l {(y - h + a )  (h + a - y)}-+, 

so that the solution satisfies 

/y dt = P/% (4.1. 

Elimination of p between (7)  and (8) gives for C, the approximate form 

C, = e-2Kh/{g,(h, h) - n-1 log (&a)}. (9) 

A similar result holds for C, with gs(h, h) replaced by g,(h, h) .  We find that 

2 
(10) 

1 
g,,,(h,h) = - log2h--e-2KhEi(2Kh)+ks,,(h,h). 

7l n 

where dk 
e-"(k cos kh - K sin lch)2 

k sinh kb (k2 + K 2 )  
k,(h,h) = - 

n- 'S 0 

and lc,(h, h) is derived from k,(h, h)  by replacing sinh kb by - cosh kb. Returning 
to (5) we see that R, = - (1  - iA) / (1  +iA) and R, = - (1  +iB)/(l --iB), where 
A = cot Kb - C;l and B = tan K b  + Cil .  So from ( 6 )  

(1') I IR( = Il-ABI (1+A2+B2+A2B2)-*, 

(TI = 1.4 +B[ (1 +AZ+B2+A2B2)-&, 

so that (RI2+ IT2[ = 1 as expected. 

which gives 
It follows from (I 1) that the condition for zero transmission is just A + B = 0, 

2 cosec 2Kb = C i l  - C;l 

('2) 

where (9) and (10) have been used. It remains to show that (12) has solutions for 
certain values of the parameters Kh and 2blh. Notice that (12)  is independent of 
the (small) gap size 2a/h. It is convenient to introduce the dimensionless 

O0 (k cos kh - K sin kh)' 
- Ze2K"S 7~ ksinh2kb(k2+K2) dh, 
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parameters a = 2Kb/n  = 4b/h and ,8 = nh/b. The integral in (12)  may be trans- 
formed into an infinite series using contour integration and we obtain as the 
condition for zero transmission 

( -  1)nexp (-n/3) 
f(a, p) log Gosh ( i p )  - + 2 C = 0. 

n= 1 n-a 

A derivation of this result is given in the appendix. 
Now from (131, as a -+ 0, f ( a ,  p)+ - 00, and as u+ w, f(a,  p) +log cosh @unless 

a is close to an integer m. Thus if u = (3m - 1) - -8 or 2 m  + c, where E is smalI and 
positive, then (13) shows that f ( a , P ) - f - w  as -8+O. Similarly if a = ( 2 m -  l ) + ~  
or 2112--8, then f(a,P)-+w as e+O.  These observations show that, for p suffi- 
ciently large, f(a,P) = 0 for a = a, (m = 1,2,  ...), and furthermore a, - m- 1 
as m-+co. The roots disappear in pairs a t  discrete values of B as p decreases. For 
example, for /3 = 2n, a1 = 0.41 and a2 N 1 whereas, for ,8 = n, a1 and a2 disappear 
and the first root is a3 2: 2. 

Thus we see that for a given ratio of barrier spacing to gap depth (or given 
,8 = nh/b) there exists an infinity of values of the ratio of barrier separation to 
incident wavelength (or of a! = 4b/h) for which total reflexion of the incident 
wave occurs. 

the proportion of wave energy transmitted 
through the gaps, from (ll), are shown in figures 2 (a) and (b)  for a gap width-to- 
depth ratio 2alh of 0.05 and 0.15 respectively. Also shown are the corresponding 
curves due to Tuck (1971) for the single barrier (2b/h = 0). It is clear that, for 
a given gap size 2a/h and a given barrier spacing 2b/h, the amount of wave energy 
transmitted is highly sensitive t o  changes in the wavenumber Kh of the incoming 
wave. The curves are seen to be dominated by the peaks of [TI2 indicating total 
transmission of the incident wave corresponding to AB = 1 from (11). 

The more unusual phenomenon of zero transmission, shown to exist by the 
argument following (13), does not appear on the curves as it first occurs at  values 
of Kh for which IT I is very small anyway. Because of this the significance of the 
phenomenon in the present problem is reduced somewhat. It ought to be possible 
to establish the existence of total reflexion when the gap size is not small, as was 
done in I, but only a t  the cost of losing the explicit simple result achieved here. 

It can be seen that the effect of a second barrier with a gap, far from reducing 
the wave energy transmitted, can actually produce totat: transmission of the 
incident wave. It is possible, however, to reduce considerably the transmitted 
wave energy as can be seen from figure 2 (a). With a single barrier, and in the 
range 0.2 < Kh < 0.4, never less than 36 yo of the wave energy is transmitted. 
By adding a similar barrier with a spacing 2b/h = 6 the transmitted wave energy 
is cut to less than 12 % in the same wavenumber range. 

The results of computing 

Conclusion 
A simple approximate method has been used for calculating the surface wave 

energy transmitted through small gaps in two parallel vertical barriers. It has 
been shown that it is possible for an incident wave to be completely transmitted 
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FIGURE 2. Proportion of wave energy transmitted. ( a )  2a/h = 0.05. 
( b )  2a/h = 0.15. 



Total reflexion of surface waves 47 1 

through the small gaps. This result was not unexpected and occurs in similar 
problems in water-wave theory. 

A more unusual result has also been shown, namely, that the incident wave can 
be totally reflected. For this to occur a certain transcendental equation had to be 
satisfied and it was shown that this equation was satisfied for an infinite number 
of configurations of barrier spacing, gap depth and incident wavelength. In the 
present problem, however, the solution being based on a small-gap approxima- 
tion, total reflexion occurred at  values of the parameters which were outside the 
range of physical interest. 

Total reflexion has been proved to occur in the related problem of two 
finite parallel vertical barriers intersecting the free surface (Evans & Morris 
1972). However, it turns out that the phenomenon does not occur in the 
problem studied by Jarvis (1971) of two infinite parallel vertical barriers 
extending downwards from points beneath the surface. This suggests that a 
possible criterion for total reflexion is two or more partial obstacles intersecting 
the free surface. As far as engineering applications are concerned, further studies 
on more realistic surface obstacles may well provide useful criteria for the more 
efficient design of breakwaters. 

Appendix 
The condition for zero transmission [equation (12)] may be written as 

O0 (k cos kh - K sin kh)2 
dk = nexp ( - 2Kh) cosec 2Kb. I = 

k sinh 2kb( k2 + K 2 )  

Now I = I, + 11, 
where dk 

O0 sinzkh 
0 ksinh2kb 

dk. 
O0 (k cos 2kh - I< sin 2kh) 

sinh 2kb(k2 + K 2 )  and 

We have 
d2, = j sin 2kh 77 nh 

dk = - tanh- 
dh o sinh2kb 4b 2b 

(Gradshteyn & Ryzhik 1965, p. 503) and so I, = +log cosh (nh/Zb) since I, = 0 
for h = 0. Also 

O0 exp (2ikh) dk 
(k - iK) sinh 2kb 

Il = lim Re16 
E+O 

n 7~ exp ( - 2Kh) + c  4Kb’ sin2Kb n=l 

n( - 1)” exp ( - nnh/b) 
nn - 2Kb 

= -- 
Y 

this result being obtained by rotating the path of integration through an 
angle &r. Substitution of the new parameters a = 2Kb/n and j = nhJb now 
gives (13) as required. 
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